GLASS: a comprehensive database for experimentally validated GPCR-ligand associations

نویسندگان

  • Wallace K. B. Chan
  • Hongjiu Zhang
  • Jianyi Yang
  • Jeffrey R. Brender
  • Junguk Hur
  • Arzucan Özgür
  • Yang Zhang
چکیده

MOTIVATION G protein-coupled receptors (GPCRs) are probably the most attractive drug target membrane proteins, which constitute nearly half of drug targets in the contemporary drug discovery industry. While the majority of drug discovery studies employ existing GPCR and ligand interactions to identify new compounds, there remains a shortage of specific databases with precisely annotated GPCR-ligand associations. RESULTS We have developed a new database, GLASS, which aims to provide a comprehensive, manually curated resource for experimentally validated GPCR-ligand associations. A new text-mining algorithm was proposed to collect GPCR-ligand interactions from the biomedical literature, which is then crosschecked with five primary pharmacological datasets, to enhance the coverage and accuracy of GPCR-ligand association data identifications. A special architecture has been designed to allow users for making homologous ligand search with flexible bioactivity parameters. The current database contains ∼500 000 unique entries, of which the vast majority stems from ligand associations with rhodopsin- and secretin-like receptors. The GLASS database should find its most useful application in various in silico GPCR screening and functional annotation studies. AVAILABILITY AND IMPLEMENTATION The website of GLASS database is freely available at http://zhanglab.ccmb.med.umich.edu/GLASS/. CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Databases and ontologies GLASS: a comprehensive database for experimentally validated GPCR-ligand associations

Motivation: G protein-coupled receptors (GPCRs) are probably the most attractive drug target membrane proteins, which constitute nearly half of drug targets in the contemporary drug discovery industry. While the majority of drug discovery studies employ existing GPCR and ligand interactions to identify new compounds, there remains a shortage of specific databases with precisely annotated GPCR-l...

متن کامل

Op-cbio150311 3035..3042

Motivation: G protein-coupled receptors (GPCRs) are probably the most attractive drug target membrane proteins, which constitute nearly half of drug targets in the contemporary drug discovery industry. While the majority of drug discovery studies employ existing GPCR and ligand interactions to identify new compounds, there remains a shortage of specific databases with precisely annotated GPCR-l...

متن کامل

ReLiance: a machine learning and literature-based prioritization of receptor—ligand pairings

MOTIVATION The prediction of receptor-ligand pairings is an important area of research as intercellular communications are mediated by the successful interaction of these key proteins. As the exhaustive assaying of receptor-ligand pairs is impractical, a computational approach to predict pairings is necessary. We propose a workflow to carry out this interaction prediction task, using a text min...

متن کامل

Structure-based identification of binding sites, native ligands and potential inhibitors for G-protein coupled receptors.

G-protein coupled receptors (GPCRs) are the largest family of cell-surface receptors involved in signal transmission. Drugs associated with GPCRs represent more than one fourth of the 100 top-selling drugs and are the targets of more than half of the current therapeutic agents on the market. Our methodology based on the internal coordinate mechanics (ICM) program can accurately identify the lig...

متن کامل

miRwayDB: a database for experimentally validated microRNA-pathway associations in pathophysiological conditions

MicroRNAs (miRNAs) are well-known as key regulators of diverse biological pathways. A series of experimental evidences have shown that abnormal miRNA expression profiles are responsible for various pathophysiological conditions by modulating genes in disease associated pathways. In spite of the rapid increase in research data confirming such associations, scientists still do not have access to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 31 18  شماره 

صفحات  -

تاریخ انتشار 2015